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We present a level set approach to the numerical simulation of the Stefan problem on non-
graded adaptive Cartesian grids, i.e. grids for which the size ratio between adjacent cells is
not constrained. We use the quadtree data structure to discretize the computational
domain and a simple recursive algorithm to automatically generate the adaptive grids.
We use the level set method on quadtree of Min and Gibou [C. Min, F. Gibou, A second
order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys.
225 (2007) 300–321] to keep track of the moving front between the two phases, and the
finite difference scheme of Chen et al. [H. Chen, C. Min, F. Gibou, A supra-convergent finite
difference scheme for the poisson and heat equations on irregular domains and non-graded
adaptive Cartesian grids, J. Sci. Comput. 31 (2007) 19–60] to solve the heat equations in
each of the phases, with Dirichlet boundary conditions imposed on the interface. This
scheme produces solutions that converge supralinearly ð�1:5Þ in both the L1 and the L1

norms, which we demonstrate numerically for both the temperature field and the interface
location. Numerical results also indicate that our method can simulate physical effects such
as surface tension and crystalline anisotropy. We also present numerical data to quantify
the saving in computational resources.

Published by Elsevier Inc.
1. Introduction

The Stefan problem is a moving interface model where the main physical process is diffusion, and is at the center of the
study of crystal growth. Moreover, it has important applications in the growing field of semi-conductors, in combustion, in
bio-nanotechnology, in tissue engineering and many others. The difficulty in solving the Stefan problem stems from the fact
that the interface position must be computed as part of the solution. In addition, boundary conditions, some of which are
depending on the interface shape, must be satisfied at the evolving front.

Successful numerical methods for this type of problems need to be able to efficiently solve the heat equation on irregular
domains and keep track of a moving interface that may undergo complex topological changes such as the merging and the
pinching of two fronts. The interface that separates the two phases can be either explicitly tracked or implicitly captured. The
main advantage of explicit approaches, e.g. front tracking [18], is their accuracy. The main disadvantage is that special care is
needed for topological changes. In turn, the explicit treatment of connectivity makes the method challenging to extend to
three spatial dimensions. Implicit representations such as the level set method [29,30,35] and the phase-field method
r Inc.
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[20] represent the front as an iso-contour of a continuous function. Topological changes are consequently handled in a nat-
ural fashion, and thus these methods are readily implemented in both two and three spatial dimensions.

In this paper we use the level set method, first introduced by Osher and Sethian [30,29,35], which is a sharp interface
model that can be used to exactly locate the interface in order to apply discretizations that depend on the exact interface
location. This method can handle discontinuous material properties easily. The earliest level set method for solidification-
type problems was presented by Sethian and Strain [34], where the authors recast the equations of motion into a boundary
integral formulation and used the level set method to update the location of the interface. Chen et al. [11] introduced a level
set approach where the diffusion equation was solved directly with finite difference schemes. A similar approach was pro-
posed by Udaykumar et al. [39]. In both cases, the solution is second-order accurate and the resulting linear system is non-
symmetric. Kim et al. [19] demonstrated that this method produces results in agreement with the solvability theory [23].
Gibou et al. proposed a second-order accurate symmetric discretization [15,14] and third-order nonsymmetric discretization
[13]. The methods presented in all these works are on uniform grids.

Physical phenomena modelled by the Stefan problem present differences in length scales and numerical approximations
on uniform grids are in such cases extremely inefficient in terms of C.P.U. and memory requirement since only a small frac-
tion of the domain needs high grid resolution, while other parts of the domain can produce accurate solutions on much coar-
ser grids. In fact, since the Stefan problem is described by a parabolic partial differential equation, the solution is smooth far
from the interface where coarse grids are sufficient to adequately capture the variations of the solution. On the other hand,
the solution presents a kink near the interface, due to Dirichlet boundary conditions. It is therefore desirable to design a
scheme that refines automatically near the interface in order to capture the sharp features in the solution’s gradients, while
leaving coarser cells far away.

Adaptive mesh refinement techniques are advantageous in those cases: AMR (adaptive mesh refinement) on Cartesian
grids has been pioneered by the work of Berger and Oliger [9] and Berger and Colella [8] for compressible flows. Within this
framework, the domain is first discretized as a coarse grid and then rectangular blocks of uniform grids with finer resolution
are added where the solution requires higher accuracy. Several applications for elliptic, parabolic and hyperbolic systems
have been proposed [4–6,17,22]. This line of work was also applied to two-phase flows in Sussman et al. [37].

Implementations based on recursive data structures have become more popular in recent years. These approaches do not
impose patches of uniform grids but rather allows the grid cells to continuously change in size. Quadtree (in 2D) and octree
(in 3D) data structures [32,33] are convenient in representing such grids, and have been proven to be optimal [1]. Recently,
Min et al. [27] solved the variable coefficient Poisson equation on a rectangular domain with non-graded adaptive Cartesian
grids, i.e. grids for which the size ratio between adjacent cells is not constrained, and obtained second-order accurate solu-
tions with second-order accurate gradients in the L1 and L1 norms. This work was then extended in Chen et al. [10] to irreg-
ular domains with non-graded Cartesian grids to achieve second-order accuracy for both the solution and its gradients. The
advantage of non-graded grids is that mesh generation is efficient and straightforward. It also save computational resources.

In this paper, we build on the work of [10,26] to present a level set approach to the numerical simulation of the Stefan
problem on adaptive Cartesian grids. We note that the extremely simple refinement scheme we are using produces grids that
are mostly graded, but not necessarily. We emphasize that the numerical method we present is applicable to non-graded
Cartesian grids and that other refinement criteria, potentially more efficient or more adapted to particular problems, can
be used. We demonstrate the supra-linear convergence of our method in the L1 and the L1 norms and demonstrate that
it can simulate physical effects such as thermal conductivity, crystalline anisotropy, surface tension, molecular kinetics
and undercoolings. Finally, we illustrate the efficiency and accuracy by comparing with computations on uniform grids.
2. Equations

2.1. Equations for the Stefan problem

Consider a domain X ¼ X� [Xþ, where the two subdomains X� and Xþ are separated by an interface C. The boundary of
X is denoted by @X (see Fig. 1). The Stefan problem describes the evolution of a scalar T, equals to Ts in X� and Tl in Xþ, such
that:
@Ts

@t
¼ r � ðDsrTsÞ in X�; ð1Þ

@Tl

@t
¼ r � ðDlrTlÞ in Xþ; ð2Þ
where the subscripts s and l denote the solid and liquid phases, respectively. The diffusion constants Ds and Dl can be dis-
continuous across C. The temperature on the solid–liquid interface satisfies the following conditions
Ts ¼ Tl ¼ TC on C; ð3Þ
where TC denotes the local interface temperature, which is given in terms of the Gibbs–Tompson boundary condition (see
e.g. [2,3]):
TC ¼ ��cj� �vV � n; ð4Þ



Fig. 1. Schematic of the computational domain.
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where V denotes the interface velocity, n denotes the normal vector to the interface, j denotes the interface curvature and �c

and �v two parameters controlling the amount of surface tension forces and molecular kinetics. Finally, the interface normal
velocity is given by the jump in flux to the interface:
V � n ¼ �ðDlrTl � DsrTsÞ on C: ð5Þ
2.2. Level set equations

We use the level set method, introduced by Osher and Sethian [30], to implicitly represent the interface between the two
phases. In particular, we describe X� by the set of points ðx; yÞ such that /ðx; yÞ < 0. Likewise, we describe Xþ by the set of
points ðx; yÞ such that /ðx; yÞ > 0. The interface C is defined by /ðx; yÞ ¼ 0. The evolution of the interface is then given by the
evolution of /:
/t þ Vnjr/j ¼ 0; ð6Þ
where Vn ¼ V � n is the normal component of the velocity. In the case of the Stefan problem, this equation simplifies to
/t � ½rT� � r/ ¼ 0; ð7Þ
where the jump of the temperature gradient ½rT� is taken from the liquid phase to the solid phase. The normal to the inter-
face and the interface curvature are defined by
n ¼ r/
jr/j ; j ¼ r � n; ð8Þ
respectively and are numerically approximated by central differencing. In order to keep the level set function close to a
signed distance function, we use the reinitialization scheme of Sussman et al. [38]:
/s þ Signð/0Þðjr/j � 1Þ ¼ 0 ð9Þ
for a few iterations s. /0 is a level set function that is not necessarily a signed distance function but describes the same con-
tour as /. The interested reader is referred to [29,35] for general details in the level set method.

3. Automatic grid generation

We represent the grid in two spatial dimensions using the quadtree data structure [32,33]: Referring to Fig. 2, the root of
the tree corresponds to the entire domain and we add four children cells as we split the domain in four equal parts. This
process is repeated recursively in order to refine parts of the domain where interesting features develop.

By definition, a quadtree is graded if the difference between two adjacent cell levels is at most one, i.e. a cell can be at
most twice as big as its neighbor. In our approach, we do not constrain the ratio between adjacent cells, i.e. even though
for most of our computations our grids turn out to be graded, the method we present can handle non-graded meshes. This
has the benefit of providing a straightforward algorithm for mesh generation as described next. Due to the parabolic nature
of the Stefan problem, the solution will be smooth far away from the interface so that coarse grids are sufficient to capture
the variations of the solution. Near the interface, the solution presents a kink due to the Dirichlet boundary condition. There-
fore, the grid should be refined near the interface and coarsen elsewhere. A simple algorithm for generating the grid is that
proposed in [26,28]: Simply split a cell C if the following expression is satisfied:



Fig. 2. Discretization of a two dimensional domain (left) and its quadtree representation (right). In this example, the tree is non-graded since the difference
of level between neighboring cells exceeds one.

Fig. 3.
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min
v2Vertices

j/ðvÞj < Lip� DiagðCÞ; ð10Þ
where v is any vertex of cell C, Vertices is the set of all vertices of C, Lip is the Lipschitz constant taken to be close to one (since
the level set is close to a signed distance function – we take Lip = 1.1), and DiagðCÞ is the diagonal length of cell C. This for-
mula simply expresses the fact that the level set function is Lipschitz continuous. Therefore, if the formula is satisfied, we
know that the interface within the current cell and that we need to refine accordingly. We note that this simple algorithm
does not necessarily produce graded meshes.

In addition, we can control three parameters pertaining to the quality of the adaptive grid. The largest cell size in the grid
is determined by the parameter MinRes, such that the cell size Mx ¼ L=MinRes for the coarsest cell (L is the length of the root
cell X). The smallest cell size is controlled by the parameter MaxRes, such that the cell size Mx ¼ L=MaxRes for the finest cell.
Finally, it is straightforward to impose a band of uniform cells along the interface with the finest resolution if needed. The
parameter BandWidth controls the approximate number of cells in this band across the interface. The implementation of
these three parameters are done by splitting a cell if it is larger than the size determined by MinRes, stopping splitting a cell
if it is already no larger than the size determined by MaxRes and splitting a cell if it is within the uniform band around the
interface until MaxRes is reached, in addition to the splitting criterion 10.

4. Numerical methods

4.1. Treating T-junction nodes

The main difficulty in designing numerical schemes on non-graded adaptive Cartesian grids comes from T-junctions
nodes, i.e. nodes for which adjacent nodes are not necessarily aligned in a Cartesian direction. In Min et al. [27,25,26], we
introduced a new approach to define the values at these ghost nodes that automatically produces second-order accurate
schemes. In particular, referring to Fig. 3, we define a ghost node T4 as:
T4 ¼
s5T6 þ s6T5

s5 þ s6
� s5s6

s2 þ s3

T2 � T0

s2
þ T3 � T0

s3

� �
: ð11Þ
A general configuration in 2D illustrating a T-junction, where v denotes a cell vertex and s denotes the length of a cell edge. In this grid, v0 does not
direct neighbor to the right. The broken line between v0 and the ghost node v4 is imaginary.
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The last term in Eq. (11) compensates for the dominant error term in the linear interpolation which involves the second-or-
der derivative in the y direction. Once every node has its regular neighboring nodes or well-defined ghost nodes or simply
given by the Dirichlet boundary condition at the interface in all the spatial directions, the first and second-order derivatives
can be discretized naturally, as if the grid was uniform. In particular, we define the first and second-order derivatives as:
Txðv0Þ ¼
T4 � T0

s4
� s1

s1 þ s4
þ T0 � T1

s1
� s4

s1 þ s4
; ð12Þ

Txxðv0Þ ¼
T4 � T0

s4
� 2
s1 þ s4

þ T1 � T0

s1
� 2
s1 þ s4

: ð13Þ
Chen et al. [10] used such discretizations and a Crank–Nicolson scheme to solve the heat equation on irregular domains and
showed that such discretizations produce second-order accurate solutions with second-order accurate gradients. We refer
the reader to [10] for details.

4.2. Level set evolution

The level set equation is solved using the semi-Lagrangian method described in [26]. We update the level set function as:
/nþ1ðxnþ1Þ ¼ /nðxdÞ, where xnþ1 is any grid node and xd is the corresponding departure point from which the characteristic
curve originates. In our simulation, the second-order trapezoidal method is used to find the departure point backward in
time,
Fig. 4. Frank-sphere solution. Evolution of the interface and corresponding adaptive grid. Note that the grid is not necessarily graded.
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x̂ ¼ xnþ1 � Dt � Vnþ1ðxnþ1Þ;

xd ¼ xnþ1 � Dt
2
� Vnðx̂Þ � Dt

2
� Vnþ1ðxnþ1Þ: ð14Þ
Non-oscillatory interpolation formulas are then used to recover the value of the solution at such points.

4.3. Reinitialization equation

The reinitialization equation is solved using a standard Godunov scheme
/nþ1 � /n

Ds
þ signð/0Þ½HGðDþx /;D�x /;Dþy /;D�y /Þ � 1� ¼ 0; ð15Þ
where the Godunov Hamiltonian HG is given by
HGða; b; c;dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðjaþj2; jb�j2Þ þmaxðjcþj2; jd�j2Þ

q
if signð/0ÞP 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðja�j2; jbþj2Þ þmaxðjc�j2; jdþj2Þ
q

if signð/0Þ < 0

8><
>: ð16Þ
and aþ ¼maxða;0Þ; a� ¼minða;0Þ. The derivatives are discretize using the following second order finite differences with the
minmod slope limiters (see [21,36] for more details):
g. 5. Illustration of the grids in the convergence test for the Frank sphere problem. The values for (MinRes,MaxRes) are given for each case.
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Dþx / ¼ /2 � /0

s2
� s2

2
minmodð/xxðv0Þ;/xxðv2ÞÞ; ð17Þ

D�x / ¼ /0 � /1

s1
� s1

2
minmodð/xxðv0Þ;/xxðv1ÞÞ; ð18Þ
where /xxðv0Þ;/xxðv1Þ and /xxðv2Þ are calculated as in Eq. (13). The discretization in the other directions can be obtained
similarly.
4.4. Algorithm for solving the Stefan problem

Our method for solving the Stefan problem uses the level set approach on non-graded adaptive grids of [26] to effectively
capture the interface at each time step, and the finite difference schemes in [10] to solve the heat equations in both the liquid
and the solid phases. The solution of the heat equation and its gradients are second-order accurate. Two copies of the tem-
perature, Tn

s and Tn
l , are defined on every grid node in the whole computational domain X. They represent the temperature at

time step n in the solid region X� and the liquid region Xþ, respectively.
After initializing T0

s and T0
l in X� and Xþ, we quadratically extend those quantities to a small band around the interface,

i.e., we extend T0
s from X� to Xþ and extend T0

l from Xþ to X�. The extrapolation procedures used are detailed in [26] and are
an extension to quadtrees of the technique introduced by Aslam [7] on uniform grids.

The interface is evolved by solving Eq. (7) using the semi-Lagrangian method in Section 4.2. We note that Eq. (5) is only
valid exactly on the interface so that the velocity field V needs to be extended to nodes on each side of the interface by con-
stant extrapolation in the direction normal to the interface using extrapolation procedures given in [26].

Then the heat equations are solve in both X� and Xþ with the new interface given by the zero contours of / at time tnþ1.
Dirichlet boundary conditions are imposed on the interface using the Gibbs–Thomson relation in Eq. (4). On the boundary of
the computational domain, @X, either Dirichlet or Neumann boundary conditions can be imposed. When computing the
Gibbs–Thomson relation in Eq. (4) we use the value of the normal velocity V at time n. As detailed in section [14,13], the
interface may sweep some grid nodes from time tn to tnþ1 so that the temperature at these nodes needs to be extrapolated
as well.

To summarize, our algorithm to solve the Stefan problems is outlined in Algorithm 2.

Algorithm 2. Procedure to solve the Stefan problem

1. Initialize / as a signed distance function
2. Initialize Ts in X�, and Tl in Xþ

3. Quadratically extrapolate Tn
s from X� to Xþ and Tn

l from Xþ to X�

4. Calculate the velocity V at grid nodes and constantly extrapolate it
away from the interface

5. Evolve the interface by solving Eq. (7) for /nþ1, and reinitialize
it as a signed distance function, using (9)

6. Solve the heat equations in X� and Xþ for Tnþ1
s and Tnþ1

l , using the
Gibbs–Thomson relation (4) as the Dirichlet boundary condition on
the interface

7. Regenerate the adaptive grid using /nþ1, and quadratically interpolate
Tnþ1

s ; Tnþ1
l and /nþ1 onto the new grid

8. if (the final time is not reached)
go to 3 with n ¼ nþ 1

end if
5. Numerical results for the Stefan problem

5.1. Accuracy and efficiency

We discuss the efficiency and accuracy of our numerical method on the known Frank-sphere exact solution [12]: In two
spatial dimensions, the region described by a disk with zero temperature, is growing into the supercooled liquid. The radius
of the growing disk is given by RðtÞ ¼ s0

ffiffi
t
p

, parameterized by s0. The temperature field is given by
Tðr; tÞ ¼ TðsÞ ¼
0 if s 6 s0

T1 1� FðsÞ
Fðs0Þ

� �
if s > s0;

(
ð19Þ
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where r is the distance to the center of the disk, s ¼ r=
ffiffi
t
p
; FðsÞ ¼ E1ðs2=4Þ, with E1ðzÞ ¼

R1
z

e�t

t dt. Here, FðsÞ is the similarity
solution of the heat equation, the coefficient s0 and T1 represent the original radius and the temperature infinitely far from
the disk’s boundary, respectively. They are related by the jump condition at the freezing front,
Table 1
Accurac

Resolut

32� 32
64� 64
128� 1
256� 2

Table 2
Accurac

Resolut

32� 32
64� 64
128� 1
256� 2

Table 3
Accurac

ðMinRes

(16,32)
(32,64)
(64,128
(128,25

Table 4
Accurac

ðMinRes

(16,32)
(32,64)
(64,128
(128,25
Vn ¼ �
@T
@n

� �
; ð20Þ
where Vn is the normal velocity at the solid–liquid interface and equal to
Vn ¼
dR
dt
¼ s0

2
ffiffi
t
p : ð21Þ
Combining Eqs. (19)–(21) yields the relation between T1 and s0:
T1 ¼
1
2

s0Fðs0Þ=F 0ðs0Þ: ð22Þ
Fig. 4 illustrates the evolution of the interface, as well as that of the adaptive grid, at different times. The final time is
t ¼ 10, which demonstrates the robustness of our algorithm for large time computations. The computation domain is
X ¼ ½�2;2� � ½�2;2� and the other parameters used in the computation are: s0 ¼ 0:25; T1 ¼ �0:05709187113307, (Min-
Res,MaxRes) = (8,64). The time step is Mt ¼ Mx where Mx is the size of the finest cell.

To demonstrate the order of accuracy of our numerical method, we simulate the growth of a two dimensional Frank
sphere up to t ¼ 2 in a domain X ¼ ½�2;2� � ½�2;2�, with different choices of (MinRes,MaxRes). The other parameters used
are: s0 ¼ 0:25; T1 ¼ �0:05709187113307 and Mt ¼ 2� Mx where Mx is the size of the finest cell. The adaptive grids at t ¼ 1
with different (MinRes,MaxRes) are illustrated in Fig. 5. Tables 1–8 give the error for the interface location (error in /) and
y results on uniform grids for / in the Frank sphere simulation.

ion L1 error Order L1 error Order

5:197� 10�2 — 3:253� 10�2 —
1:489� 10�2 1.804 1:100� 10�2 1.564

28 5:395� 10�3 1.464 3:535� 10�3 1.638
56 1:737� 10�3 1.635 1:100� 10�3 1.684

y results on uniform grids for T in the Frank sphere simulation.

ion L1 error Order L1 error Order

3:016� 10�3 — 5:395� 10�4 —
1:094� 10�3 1.463 1:739� 10�4 1.633

28 4:476� 10�4 1.290 5:523� 10�5 1.655
56 1:498� 10�4 1.579 1:442� 10�5 1.938

y results on adaptive grids for / in the Frank Sphere simulation with MaxRes/MinRes = 2.

; MaxResÞ L1 error Order L1 error Order

5:503� 10�2 — 3:504� 10�2 —
1:492� 10�2 1.883 1:102� 10�2 1.669

) 5:410� 10�3 1.463 3:541� 10�3 1.638
6) 1:750� 10�3 1.629 1:112� 10�3 1.672

y results on adaptive grids for T in the Frank sphere simulation with MaxRes/MinRes = 2.

; MaxResÞ L1 error Order L1 error Order

3:223� 10�3 — 8:818� 10�4 —
1:100� 10�3 1.552 2:314� 10�4 1.930

) 4:490� 10�4 1.292 7:122� 10�5 1.700
6) 1:509� 10�4 1.573 1:860� 10�5 1.937



Table 5
Accuracy results on adaptive grids for / in the Frank sphere simulation with MaxRes/MinRes = 4.

ðMinRes; MaxResÞ L1 error Order L1 error Order

(8,32) 5:522� 10�2 — 3:519� 10�2 —
(16,64) 1:494� 10�2 1.886 1:102� 10�2 1.676
(32,128) 5:501� 10�3 1.441 3:661� 10�3 1.589
(64,256) 1:801� 10�3 1.611 1:134� 10�3 1.691

Table 6
Accuracy results on adaptive grids for T in the Frank sphere simulation with MaxRes/MinRes = 4.

ðMinRes; MaxResÞ L1 error Order L1 error Order

(8,32) 3:231� 10�3 — 1:397� 10�3 —
(16,64) 1:093� 10�3 1.564 3:756� 10�4 1.895
(32,128) 4:567� 10�4 1.259 1:172� 10�4 1.680
(64,256) 1:552� 10�4 1.557 3:059� 10�5 1.938

Table 7
Accuracy results on adaptive grids for / in the Frank sphere simulation with MaxRes/MinRes = 8.

ðMinRes; MaxResÞ L1 error Order L1 error Order

(4,32) 5:521� 10�2 — 3:519� 10�2 —
(8,64) 1:490� 10�2 1.890 1:098� 10�2 1.680
(16,128) 5:559� 10�3 1.423 3:656� 10�3 1.586
(32,256) 1:924� 10�3 1.530 1:209� 10�3 1.597

Table 8
Accuracy results on adaptive grids for T in the Frank sphere simulation with MaxRes/MinRes = 8.

ðMinRes; MaxResÞ L1 error Order L1 error Order

(4,32) 3:230� 10�3 — 1:484� 10�3 —
(8,64) 1:095� 10�3 1.560 5:614� 10�4 1.403
(16,128) 4:580� 10�4 1.258 1:661� 10�4 1.757
(32,256) 1:659� 10�4 1.465 5:338� 10�5 1.638
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Fig. 6. Log–log plot of the computational time as a function of maximum error in / (left) and T (right). For these tested grid resolutions, the error is mainly
determined by MaxRes, confirming that a coarser grid resolution can be used at locations far away from the interface (parabolicity of the Stefan problem).
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the error for the temperature field T in both the L1 and L1 norms. We note that all the computation are carried out to second-
order accuracy but that the resulting overall solution has a lower convergence rate ð� 1:5Þ. This can be explained by the dif-
ferent inaccuracy in extrapolation and reinitialization procedures that are not iterated to steady state.
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.

efficient solvers such as multigrid methods should be used so that the difference between solving symmetric vs. nonsym-
metric system does not differ by a large factor.

5.2. Numerical results for unstable solidification

We now present some numerical simulation results of the growth of a solid seed into an undercooled liquid. In all the
following examples, The temperature field is initialized uniformly as the Stefan number St, i.e., T ¼ St < 0 in the liquid re-
gion, and T ¼ 0 in the solid region. Unless otherwise stated, adiabatic boundary conditions are imposed on the four sides
of the computational domain X, and we assume that the diffusion constant is the same in both phases.

5.3. Role of grid resolutions on developing features

This example tests the role of (MinRes,MaxRes) in the computational results of dendritic solidification. Consider the
growth of a small solid seed placed in a surrounding region of undercooled liquid with the Stefan number St ¼ �0:5. Our
computational domain is X ¼ ½�2;2� � ½�2;2� and the initial shape of the solid seed is given by the following parametric
equations,
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where R ¼ 0:1; P ¼ 0:02 and s 2 ½0;2p�. The Gibbs–Thomson relation, Eq. (4), with �c ¼ 0:002 and �v ¼ 0:002 is applied on the
solid–liquid interface. Adiabatic boundary conditions are imposed on the four sides of X.

Fig. 7 compares the growth histories of the interface with max resoln ¼ 512 and MinRes increasing from 16 to 512. No
difference is observed between the results obtained on these different grids. This demonstrates that a minimum resolution
of MinRes = 16 is enough to capture the smooth features of the solution far away from the interface and grid refinement can
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be done by only increasing MaxRes. Increasing MaxRes does not increase much the total number of computational nodes
since the region near the interface is proportional to a one dimensional problem.

Fig. 8 illustrates the growth histories of the interface from t ¼ 0 to t ¼ 0:8, with various values of MaxRes. Time levels
shown are in uniform increments from t ¼ 0 up to a final time of t ¼ 0:8. In these computations, the time step is
Mt ¼ 0:001. The convergence of these plots under grid refinement is similar to that in [11]. But compared with those in
[18,39,40,14], Fig. 8 has flatter boundaries and doesn’t exhibit pronounced secondary branches.

5.3.1. Effect of varying isotropic surface tension
Figs. 9 and 10 demonstrate the effect of isotropic surface tension by In this example, we impose the Gibbs–Thomson rela-

tion T ¼ ��cj on the interface with varying values of �c. The computational domain is X ¼ ½�1:5;1:5� � ½�1:5;1:5�, the
undercooled liquid has a Stefan number of St ¼ �0:5 and the time step is Mt ¼ 0:004. Moving adaptive grids with (Min-
Res,MaxRes) = (32,256) are used in our simulation. Fig. 9 depicts the growth histories of a regular pentagon solid seed into
−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
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the supercooled liquid. Fig. 10 depicts the growth histories of a square solid seed into the supercooled liquid. With increasing
values of �c , the interface becomes smoother. These results demonstrate the capability of our method to capture the smooth-
ing effect of surface tension on the interface growth.

5.3.2. Effect of anisotropic surface tension
Anisotropic surface tension forces the solid seed to grow along preferred directions. In this example, the initial seed is a

regular pentagon, placed in an undercooled liquid with the Stefan number St ¼ �0:5. The Gibbs–Thomson relation we im-
pose on the interface is T ¼ �0:001ð8=3 sin4ð2a� p=2ÞÞj, where a is the angle between the normal to the interface and the
x-axis. Fig. 11 illustrates the evolution of the interface on both a uniform 256� 256 grid and adaptive moving grids with
(MinRes,MaxRes) = (32,256). Our computational domain is X ¼ ½�1:5;1:5� � ½�1:5;1:5� and the time step in the simulation
is Mt ¼ 0:001. We can see that the fourfold anisotropy of the Gibbs–Thomson relation leads to fastest growth along the four
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Fig. 14- Tip velocity of a circular seed growing under standard four-fold anisotropic surface tension as a function of time. The tip velocity reaches a steady
state value of 1.7-
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diagonal directions. The branch in the positive y direction, as well as its secondary branches, is due to the upward sharp cor-
ner of the initial seed. In Fig. 11, the results obtained on the uniform grid and adaptive moving grids are almost identical. In
Fig. 12, we plot the adaptive and uniform grids at the final time t ¼ 0:4, in which the number of nodes in the case of the
adaptive grid is only 23% of that of the uniform grid. To obtain the results in Fig. 11, the computational time when (Min-
Res,MaxRes) = (32,256) on adaptive grids is only about 15% of that the uniform 256� 256 grid.

5.3.3. Comparison with the microscopic solvability predictions
In this example, we assess the accuracy of our method in predicting the tip growth rate of a dendrite. Numerical simu-

lation is performed for a circular seed of radius 0.05 at the center of the computational domain X ¼ ½�6;6� � ½�6;6�. The
undercooled liquid has a Stefan number of St ¼ �0:45. We impose the Gibbs–Thomson relation (4) on the solid–liquid inter-
face, where �v ¼ 0 and �c ¼ �0:001½1þ 0:4ð1� cos 4aÞ�, where a is the angle between the normal to the interface and the x-
axis. Fig. 13 depicts the evolution of the interface from t ¼ 0 to t ¼ 2:2 on a (MinRes,MaxRes) = (64,1024) moving grids. In
this simulation, Mt ¼ 0:002. Fig. 14 plots the tip velocity as a function of time. The tip velocity reaches a steady state value of
1.7, in agreement with solvability theory [24].

6. Conclusions

We have presented a level set approach to the numerical simulation of the Stefan problem on non-graded adaptive Carte-
sian grids, i.e. grids for which the size ratio between adjacent cells is not constrained. Compared with uniform grids, adaptive
grids relocate computational resources efficiently by refining only where needed, thus reducing both the amount of compu-
tational time and the memory usage significantly. Compared with traditional graded adaptive grids, the non-graded property
of our adaptive grids allows faster and more flexible grid generation. We discretize our computational domain using the opti-
mal quadtree data structure, and a simple recursive algorithm is used to generate the adaptive grids automatically. Since in
the Stefan problem large errors are usually observed near the interface and dendritic structures and other physical/geomet-
rical properties of the interface need to be captured accurately at the interface, we construct our adaptive grid such that fin-
est cells are placed around the interface to form a uniform band, and coarser cells are placed farther away form the interface.
Numerical examples are presented to confirm this choice and validate the efficiency of such grids for the Stefan problem.

We demonstrate the supra-convergence for both the temperature field and the evolution of the interface by comparing
with exact Frank-sphere solutions. On our adaptive grids, the computational time can be saved by several orders of magni-
tude while the same accuracy in the solution is achieve; if the same amount of computational time is used, our solution can
be several orders of magnitude more accurate compared with that on uniform grids. We also present numerical examples to
demonstrate that our method’s capability to capture the effects of many physical and numerical parameters in the Stefan
problem. Specifically, we study the effect of grid resolutions, the smoothing effect of isotropic surface tension, and the effect
of anisotropic surface tension. Comparison with the microscopic solvability prediction is performed for a standard four-fold
anisotropic problem to confirm the accuracy of our method.
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